

PIANO ESECUTIVO CONVENZIONATO OBBLIGATORIO AREA PER INSEDIAMENTI INDUSTRIALI D8

5. STUDI SPECIALISTICI

5.8

Opere private: Progetto di invarianza idraulica e idrologica

Scala

Committente:

Valtidone S.p.a.

PROJECT MANAGEMENT
The Blossom Avenue Partners

Prof. Arch. Marco Facchinetti
Urb. Marco Dellavalle
Arch. Luca De Stefani
Corso Italia 13, 20122, Milano
Tel. +39 (02) 365 20482
tbapartners@pec.it

STUDI SPECIALISTICI

TEA consulting
Ing. Massimo Moi
Ing. Ivan Genovese
Via G. B. Grassi 15, 20157, Milano
moi@territorioambiente.com
ig@mobiliter.it

CONSULENZA URBANISTICA cnstudio

Arch. Domenico Catrambone
Corso Alessandria 67, 14100, Asti
Tel. +39 0141 321845
fax +39 0141 531833
domenico.catrambone@cnstudio.net
elaborati@cnstudio.net

Dott. Architetto Paesaggista Luigino Pirola Via Piave 1, 24040, Bonate Sopra (BG) Tel. 035.992674 info@studioarchitetturapaesaggio.it

info@studioarchitetturapaesaggio.it www.studioarchitetturapaesaggio.it

RILIEVO TOPOGRAFICO

Pro Essegi
di Passarella Gianluca e Detogni Sabina
Associazione tra Professionisti
Via Monti Lessini 119, 37132, Verona (VR)
Tel. 045 892 2371
posta@proessegi.it
geom.gianluca.passarella@gmail.com

novembre 2022

COMUNE DI ALESSANDRIA Loc.Spinetta Marengo PIATTAFORMA LOGISTICA

Opere private Progetto di invarianza idraulica e idrologica

Ottobre 2022

Redatto da: ing. Michelangelo Aliverti

1.	INT	RODUZIONE	3
		RMATIVA DI RIFERIMENTO	
3.	FOG	NATURA METEORICA	5
3	3.1 CO	ONDIZIONI IDROGEOLOGICHE	5
3	3.2	DESCRIZIONE SISTEMA DI SMALTIMENTO	5
3	3.2	CARATTERISTICHE PRINCIPALI DELL'AREA - LINEE IMPOSTAZIONE PROGETTUALE	9
3	3∙3	RETE DI TRASPORTO (condotte) - METODOLOGIA DI CALCOLO IDRAULICO	11
3	3.4	MISURE D'INVARIANZA IDROLOGICA E IDRAULICA - METODOLOGIA DI CALCOLO	12
	3.4.1	Superfici dell'intervento	12
	3.4.2	Coefficiente di deflusso medio ponderale	13
	3.4.3	Curva di possibilità climatica	13
	3.4.4	Dimensionamento invaso di laminazione/dispersione	15
	3.4.5	Verifiche idrauliche invarianza idraulica ed idrologica	17
4.	CON	ICLUSIONI	19

<u>ALLEGATI</u>

Prove di permeabilità

Tabella nº1_fognatura bianca - portata di piena

Tabella n°2_fognatura bianca – dimensionamento condotte

Tabella n°3_smaltimento in loco (laghetto L1 – SF1)

Tabella $n^{o}4$ _smaltimento in loco (laghetto $L_2 - SF_2$)

Tabella n°5_verifiche Invarianza idraulica ed idrologica_ante e post opera

1. INTRODUZIONE

La presente relazione, congiuntamente agli elaborati grafici di dettaglio in allegato, illustra il progetto del sistema di smaltimento delle acque meteoriche a servizio delle aree private, facenti parte dell'AdT ricadente in "Zona Industriale D8", nel comune di Alessandria, in Fraz. Spinetta Marengo.

Fig.1: inquadramento area intervento

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l. Corso Italia n.13 20122 Milano (MI)	Comune di Alessandria Piattaforma logistica Progetto di invarianza idraulica e idrologica	Ottobre 2022	3 di 42

Al fine di perseguire l'invarianza idraulica e idrologica delle trasformazioni d'uso del suolo, riequilibrare progressivamente il regime idrologico e idraulico naturale e conseguire la riduzione quantitativa dei deflussi, il progetto prevede che la totalità della acque di dilavamento del sistema viario in progetto sia smaltito nei primi strati del sottosuolo.

Nei capitoli successivi verrà affrontato il tema relativamente a tale area con particolare riguardo alle scelte progettuali ed ai criteri di calcolo che hanno determinato la configurazione planimetrica del sopradescritto sistema di smaltimento reflui.

Per maggiori dettagli sulle modalità di esecuzione delle opere si rimanda agli elaborati grafici di dettaglio.

2. NORMATIVA DI RIFERIMENTO

- Regolamento di Fognatura Comunale
- PRG Comunale
- Piano Territoriale di Coordinamento Provinciale

A livello nazionale non esiste una normativa specifica per il dimensionamento degli invasi di laminazione. Le uniche norme in materia sono quelle emanate dalle Autorità di bacino e dai piani regolatori comunali. Nel caso specifico gli interventi di invarianza idraulica e idrologica sono rappresentati, come di seguito illustrato, soltanto da strutture d'infiltrazione; infatti non sono previsti scarichi di alcun genere verso ricettori (corpi idrici superficiali, collettori fognari comunali, etc..).

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l.	Comune di Alessandria		
Corso Italia n.13	Piattaforma logistica	Ottobre 2022	4 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		

3. FOGNATURA METEORICA

3.1 CONDIZIONI IDROGEOLOGICHE

Come si evince dalla componente geologica del PGT comunale e dalla relazione geologica a firma del Dott.Geol. Perotti (datata maggio 2022) le condizioni idrogeologiche dell'area in esame consentono lo smaltimento *in loco* della totalità delle acque di dilavamento meteorico delle superfici impermeabilizzate facenti parte della piattaforma logistica in progetto.

In generale le suddette acque di dilavamento vengono indirizzate in n°2 depressioni naturali (laghetti L1 e L2) e qui disperse naturalmente nei primi strati di terreno; la soggiacenza di falda si attesta mediamente a circa 10,00 m dal p.c. con oscillazioni massime di circa 3,00 metri nella stagione irrigua.

La permeabilità *in situ* è piuttosto variabile: a nord (magazzino 1) è nell'ordine di 10^{-3} m/s $\div 10^{-4}$ m/s a sud (magazzino 2) nell'ordine di 10-5 m/s.

3.2 DESCRIZIONE SISTEMA DI SMALTIMENTO

L'area privata del presente AdT è destinata ad accogliere un'importante piattaforma logistica costituita da n°2 magazzini necessariamente ed inevitabilmente serviti da un'articolata ed estesa viabilità interna (carreggiate, snodi, parcheggi, etc).

Nel prosieguo della trattazione si farà riferimento a:

- SF1: sistema di smaltimento a servizio del Magazzino 1 (zona nord dell'AdT)
- SF2: sistema di smaltimento a servizio del Magazzino 2 (zona sud dell'AdT)

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l.	Comune di Alessandria		
Corso Italia n.13	Piattaforma logistica	Ottobre 2022	5 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		

SISTEMA DI SMALTIMENTO SF1

Il sistema di smaltimento delle acque meteoriche SF1 è costituito da n°2 reti distinte:

- Rete cortilizia: le acque di dilavamento delle aree carrabili vengono raccolte mediante la giustapposizione di caditoie stradali sifonate e canalette grigliate (in corrispondenza delle baie di carico-scarico merci) che le conferiscono entro n°4 dorsali principali costituite da scatolari in c.a tipo COPREM aventi sezione interna B=1,50 m e H=1,00 m e in tubazioni in calcestruzzo turbocentrifugato caratterizzate da diametri interni compresi tra DN600 e DN1200.

Esse recapitano a gravità le acque raccolte entro la depressione naturale L1, previo trattamento disoleante D1 (portata di trattamento coincidente con i primi 5 mm di pioggia Qtratt=1.104 l/s). Il fondo del laghetto L1 si attesta a circa -3,30 m rispetto al piano campagna ed è dimensionato per invasare fino ad un'altezza utile di circa Hut=2,50 m per un volume utile d'invaso di circa V_{L1}=12.750 mc.

La presenza dei suddetti scatolari permette di invasare "in linea" le portate che superano la capacità d'infiltrazione del laghetto di laminazione L1.

Essi, congiuntamente agli scatolari della rete pluviale, garantiscono un ulteriore volume utile di invaso pari a circa $V_{SCAT}=3.65$ o mc (tenendo conto del grado di riempimento medio degli stessi scatolari h/D=15% in occasione degli eventi di piena).

A monte dell'immissione nel laghetto L1 è previsto il classico pozzetto di campionamento PC, avente il fondo ribassato di 50 cm e accessibile H24 al Personale Preposto.

- Rete pluviale: le acque di dilavamento della copertura vengono dapprima raccolte in n°4 vasche destinate al recupero della pioggia ai fini irrigui (RP1, RP2, RP3, RP4) e quindi entro n°2 treni principali di scatolari in c.a tipo COPREM aventi sezione interna B=1,50 m e H=1,00 m.

Quest'ultimi recapitano la totalità delle acque direttamente nel laghetto L1 senza che sia previsto alcun tipo di trattamento "qualitativo" dal momento che tali acque non risultano suscettibili ad alcuna forma di inquinamento.

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l.	Comune di Alessandria		
Corso Italia n.13	Piattaforma logistica	Ottobre 2022	6 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		

Come precedentemente descritto la laminazione delle portate di piena è garantito dalla realizzazione della depressione L1 e dalla presenza dei suddetti scatolari.

Essi, congiuntamente agli scatolari della rete cortilizia, garantiscono un ulteriore volume utile di invaso pari a circa $V_{SCAT}=3.65$ o mc (tenendo conto del grado di riempimento medio degli stessi scatolari h/D=15% in occasione degli eventi di piena).

La capacità utile di ciascuna vasca adibita al recupero pioggia ai fini irrigui è pari a:

Da qui la volumetria complessiva della vasche RP_{tot}= (RP1+RP2+RP3+RP4)=400 mc.

Alle nostre latitudini il fabbisogno irriguo ammonta a circa 20 mc per ettaro di area "a verde". Poichè l'estensione di tale area verde di pertinenza del magazzino 1 misura circa 3 ha, si ottiene un fabbisogno giornaliero pari a 60 mc. In ragione della destinazione d'uso del fabbricato e delle essenze arboree previste si ritiene appropriato garantire una riserva idrica massima di 6÷7 gg.

SISTEMA DI SMALTIMENTO SF2

Il sistema di smaltimento delle acque meteoriche SF2 è costituito da n°2 reti distinte:

RP1=RP2=RP3=RP4=100 mc (Hutile=2,00 m).

- Rete cortilizia: le acque di dilavamento delle aree carrabili vengono raccolte mediante la giustapposizione di caditoie stradali sifonate e canalette grigliate (in corrispondenza delle baie di carico-scarico merci) che le conferiscono entro tubazioni in calcestruzzo turbocentrifugato caratterizzate da diametri interni compresi tra DN400 e DN800.

Esse recapitano a gravità le acque raccolte entro la depressione naturale L2, previo trattamento disoleante D2 (portata di trattamento coincidente con i primi 5 mm di pioggia Qtratt=102,85 l/s). Il fondo del laghetto L2 si attesta a circa -3,00 m rispetto al piano campagna e si prevede che si riempia al fino ad un'altezza utile di circa Hut=2,05 m, per un volume utile d'invaso di circa V_{L2} =13.079 mc.

A monte dell'immissione nel laghetto L2 è previsto il classico pozzetto di campionamento PC, avente il fondo ribassato di 50 cm e accessibile H24 al Personale Preposto.

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l.	Comune di Alessandria		
Corso Italia n.13	Piattaforma logistica	Ottobre 2022	7 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		

- Rete pluviale: le acque di dilavamento della copertura vengono dapprima raccolte in n°4 vasche destinate al recupero della pioggia ai fini irrigui (RP5, RP6, RP7, RP8) e quindi conferite entro n°2 dorsali principali in c.a turbocentrifugato aventi DN1200 e pendenza p=0,2%.

Quest'ultime recapitano la totalità delle acque direttamente nel laghetto L2 senza che sia previsto alcun tipo di trattamento "qualitativo" dal momento che tali acque non risultano suscettibili ad alcuna forma di inquinamento.

Come precedentemente descritto la laminazione delle portate di piena è garantito dalla realizzazione della depressione naturale L2.

La capacità utile di ciascuna vasca adibita al recupero pioggia ai fini irrigui è pari a RP5=RP6=RP7=RP8=100 mc (Hutile=2,00 m).

Alle nostre latitudini il fabbisogno irriguo ammonta a circa 20 mc per ettaro di area "a verde".

Poichè l'estensione di tale area verde di pertinenza del magazzino 1 misura circa 3 ha, si ottiene un fabbisogno giornaliero pari a 60 mc. In ragione della destinazione d'uso del fabbricato e delle essenze arboree previste si ritiene appropriato garantire una riserva idrica massima di 6÷7 gg.

Da qui la volumetria complessiva della vasche RPtot=(RP5+RP6+RP7+RP8)=400 mc.

Circa le modalità di calcolo della capacità d'invaso dei sistemi di smaltimento SF1 e SF2 sopradescritti si rimanda ai paragrafi successivi e alle tabelle di calcolo in allegato.

Per maggior chiarezza si rimanda agli elaborati grafici di riferimento.

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l.	Comune di Alessandria		
Corso Italia n.13	Piattaforma logistica	Ottobre 2022	8 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		

3.2 CARATTERISTICHE PRINCIPALI DELL'AREA - LINEE IMPOSTAZIONE PROGETTUALE

L'area in esame misura complessivamente A_{tot}=397.643 mq.

L'estensione superficiale della superficie scolante impermeabilizzata gravante sui sistemi di smaltimento/dispersione di cui sopra ammonta a circa $A_{imp}=288.910$ mq ed è così suddivisa:

- $A_{impSF1}=198.785 mq$
- A_{impSF2}=90.125 mq

Nel calcolo delle suddette superfici impermeabilizzate sono escluse le aree a verde non munite di sistemi di raccolta e dispersione.

Consultando la relazione geologica a firma del Geol. Perotti emerge come i primi strati del sottosuolo in corrispondenza del fronte Nord dell'area siano caratterizzati da discreti valori di permeabilità, nell'ordine di $\psi=10^{-3}\div10^{-4}$ m/s, poichè caratterizzati da orizzonti litologici costituiti prevalentemente da sabbia medie e fini.

Invece a lungo il fronte Sud dell'area in esame la permeabilità risulta meno favorevole alla dispersione delle acque dal momento che risulta nell'ordine di ψ = 10⁻⁵ m/s

Tali valori sono suffragati dalle prove di permeabilità eseguite sul campo, secondo cui la falda freatica si attesta ad oltre 10,00 m dal piano campagna.

Tenendo conto della progressiva tendenza all'intasamento dei materassi permeabili, si assumono per il dimensionamento dei sistemi disperdenti in progetto L1 e L2 rispettivamente i seguenti valori di permeabilità:

- Ψ1=1,00 *10⁻⁴ m/s
- Ψ2=1,00 *10⁻⁵ m/s

Fin da subito preme sottolineare come il fondo di ciascun laghetto, anche nella stagione più critica (stagione irriqua), disti dall'orizzonte freatico di almeno 3,00 m >> 1,00 m (limite normativo vigente).

Per quanto riguarda il coefficiente di afflusso (che rappresenta, come è noto, il rapporto fra il volume

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l.	Comune di Alessandria		
Corso Italia n.13	Piattaforma logistica	Ottobre 2022	9 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		

idrico che defluisce dalla sezione di calcolo e il volume idrico affluito al bacino attraverso la precipitazione), si è attribuito il seguente valore alle tipologie di superfici considerate ai fini del drenaggio:

Φ1 = 1 (coperture, corselli asfaltati, marciapiedi, parcheggi)

Per quanto riguarda la costante d'invaso K si è fatto riferimento alla formula di Ciaponi-Papiri. Tuttavia, come noto, tale formula tende ad essere usata su bacini a scala maggiore; nella fattispecie si ritiene che i valori derivanti dalla suddetta formula risulterebbero fin troppo conservativi e poco aderenti alla realtà. Pertanto, tenendo conto della tipologia e dell'estensione dell'area, si è optato di attribuire a K il seguente valore:

K = 300 sec

Il D.lgs 152/06 demanda alle Regioni la regolamentazione dello scarico delle acque di prima pioggia, cioè quelle corrispondenti, nella prima parte di ogni evento meteorico, ad una precipitazione di 5 mm uniformemente distribuita sull'intera superficie scolante.

In particolare la Legge regionale 29 dicembre 2000, n. 61 indica chiaramente i suoi ambiti di applicazione: Dunque gli interventi in progetto sono esenti dall'obbligo di separazione e raccolta delle acque di prima pioggia.

NOTA PROGETTUALE

E' opportuno specificare che nella presente trattazione, le disposizioni di cui al Piano Territoriale di Coordinamento Provinciale al fine di perseguire l'invarianza idrologica-idraulica delle trasformazioni d'uso del suolo, sono state applicate al solo dimensionamento dell'organo di laminazione/dispersione ($T_{ritorno}$ =100 anni).

Il dimensionamento delle condotte è stato calcolato adottando una curva di possibilità climatica avente tempo di ritorno T=20 anni (vedi Tabella n°1 in allegato).

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l. Corso Italia n.13	Comune di Alessandria Piattaforma logistica	Ottobre 2022	10 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		

3.3 RETE DI TRASPORTO (condotte) - METODOLOGIA DI CALCOLO IDRAULICO

Si è optato di adottare la seguente curva di possibilità climatica, caratterizzata da un tempo di ritorno T=20 anni:

	а	n
h=at ⁿ	32,80	0,29

Per il calcolo delle portate massime connesse con eventi meteorici intensi si è adottato il classico metodo dell'invaso lineare. Adottando le classiche ipotesi e semplificazioni che stanno alla base di questo metodo, il coefficiente udometrico, cioè la portata massima per unità di superficie di bacino che defluisce da una prefissata sezione della rete fognaria, è valutabile con l'espressione:

$$U = \frac{10^7}{3600^n} 0,65 \,\varphi \, a \, K^{(n-1)} \tag{1}$$

nella quale i simboli assumono il sequente significato:

U = coefficiente udometrico [l/(s ha)];

n = esponente della curva di probabilità pluviometrica ragguagliata all'area del bacino;

a = coefficiente della curva di probabilità pluviometrica ragguagliata all'area del bacino [m];

 φ = coefficiente di afflusso;

K = costante di invaso del sistema bacino-rete sotteso dalla sezione di calcolo [s].

Al fine di caratterizzare i diametri delle condotte facenti parte del sistema è stata utilizzata la formula di Gauckler-Strickler (scale deflusso normalizzate):

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l. Corso Italia n.13	Comune di Alessandria Piattaforma logistica	Ottobre 2022	11 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		·

$$r = \left(\frac{Qtot}{k \times \frac{A}{r^2} \times \left(\frac{R}{r}\right)^{2/3} \times \sqrt{i}}\right)^{3/8}$$

assumendo le caratteristiche geometriche e dei materiali riportati nelle tavole di progetto.

3.4 MISURE D'INVARIANZA IDROLOGICA E IDRAULICA - METODOLOGIA DI CALCOLO

3.4.1 Superfici dell'intervento

Come precedentemente illustrato, l'estensione della superficie territoriale privata ammonta a

S_{priv}=397.643 mq

La relativa superficie impermeabilizzata è pari a: **S**_{IMP} **=288.910 mq** suddivisa tra il sistema SF1 e SF2 nel seguente modo:

- S_{impSF1}=198.785 mq
- S_{impSF2}=90.125 mq

Per cui l'area d'intervento si colloca nella classe di "Marcata Impermeabilizzazione potenziale".

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l.	Comune di Alessandria		
Corso Italia n.13	Piattaforma logistica	Ottobre 2022	12 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		

CLASSI DI INTERVENTO	SOGLIE DIMENSIONALI
Trascura <u>bile</u> impermeabilizzazione potenziale	Intervento su superfici di estensione <u>inferiore a 0,1 ha</u> (1.000 m²)
Modesta impermeabilizzazione potenziale	Intervento su superfici di estensione maggiore di 0,1 ha (1.000 m²) e inferiore ad 1 ha (10.000 m²)
Significat <u>iva</u> impermeabilizzazione potenziale	 Intervento su superfici di estensione maggiore di 1 ha (10.000 m²):
	con Imp(*) < 0,3
Marcata impermeabilizzazione potenziale	Interventi su superfici di estensione <u>superiore a 10 ha</u> (100.000 m² con Imp(*) > 0,3

Fig.4: classe intervento – impermeabilizzazione potenziale

3.4.2 Coefficiente di deflusso medio ponderale

Stante la Superficie Trasformata *ante e post operam* (permeabile+impermeabile) si ottengono i seguenti coefficienti di deflusso:

- Φ_{ANTE OPERA}=0,20
- $\Phi_{POSTOPERA}=0,71$

Per maggior chiarezza vedi Foglio di calcolo adottato per la Regione Piemonte, in allegato.

3.4.3 Curva di possibilità climatica

Relativamente alle precipitazioni di riferimento da considerare per il dimensionamento dei dispositivi di drenaggio e gestione delle acque meteoriche, ARPA Piemonte ha sviluppato un nuovo portale webgis Geoviewer2D per la consultazione di dati informativi territoriali compreso l'Atlante delle piogge intense e relative elaborazioni statistiche secondo le distribuzioni GEV o Gumbel per dati di pioggia fino al 2002. Il servizio Atlante delle piogge intense consente di ricavare in un qualsiasi punto del territorio regionale le linee segnalatrici di probabilità pluviometrica per assegnato tempo di ritorno per le durate da 10 minuti a 24

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l.	Comune di Alessandria		
Corso Italia n.13	Piattaforma logistica	Ottobre 2022	13 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		

ore che rappresentano lo strumento essenziale nella progettazione idraulica e nella valutazione probabilistica delle portate di piena.

L'analisi statistica ha utilizzato tutta la base dati disponibile comprensiva delle stazioni storiche del Servizio Idrografico e Mareografico Nazionale funzionati dal 1913 al 2002 e delle stazioni della rete regionale realizzata a partire dal 1987.

Per il dimensionamento dei sistemi di infiltrazione a servizio di ampie superfici impermeabilizzate come nel caso di specie, data l'incertezza di calcolo in generale per questi dispositivi, linee guida di molte regioni italiane, in particolare Veneto e Lombardia, prescrivono di effettuare il dimensionamento e la verifica sulla scorta di eventi caratterizzati da TR = 100 anni: $h = 76,60 t^{0.27}$

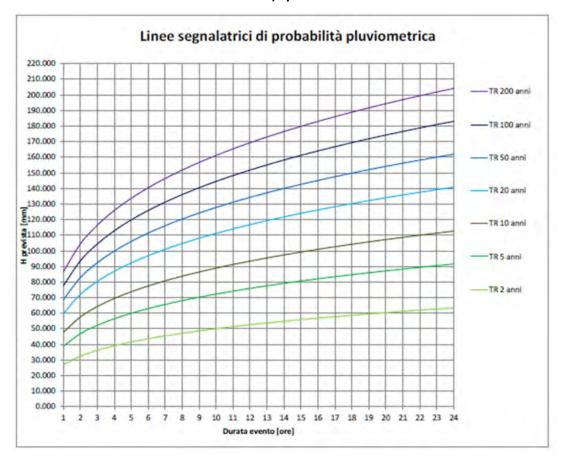


Fig.5: curva di possibilità climatica - Alessandria

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l.	Comune di Alessandria		
Corso Italia n.13	Piattaforma logistica	Ottobre 2022	14 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		

3.4.4 Dimensionamento invaso di laminazione/dispersione

Il dimensionamento di tutti i sistemi di infiltrazione (trincee drenanti, pozzi perdenti, depressioni naturali, etc..) va eseguito confrontando le portate in arrivo al sistema con la capacità d'infiltrazione del terreno e con l'eventuale volume immagazzinato nel sistema (equazione di continuità):

$$(Qp - Qf)\Delta t = \Delta W$$

dove:

Qp = portata influente (mc/s)

Qf = portata infiltrata (mc/s)

 $\Delta t = intervallo di tempo (ore)$

 ΔW = variazione del volume invasato (mc)

La capacità d'infiltrazione è stata stimata con la legge di Darcy:

$$Qf = \psi * J * A$$

dove:

Qf = portata infiltrata (mc/s)

 Ψ = permeabilità del terreno (m/s)

J = cadente piezometrica (m/m)

A = superficie netta d'infiltrazione (mq)

Per calcolare la variazione di volume invasato ΔW è stato eseguita una procedura iterativa che consiste nei seguenti passi:

- 1) Si fissa una durata di precipitazione t_p (ad esempio 5 minuti) e si calcola, dalla curva di probabilità pluviometrica, la conseguente intensità di pioggia $i(t_p)$ ipotizzando che sia costante nel tempo.
- 2) Si calcola l'idrogramma di piena corrispondente alla precipitazione di durata t_p e di intensità $i(t_p)_i$ l'idrogramma è calcolato assumendo il modello dell'invaso lineare esplicitato dalle seguenti espressioni:

a) $q=arphi\ i\ S\left(1-e^{-t/K} ight)$	$pert{\leq}t_p$		(3)
Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l.	Comune di Alessandria		
Corso Italia n.13	Piattaforma logistica	Ottobre 2022	15 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		

b)
$$q = Q_m e^{\frac{t - t_p}{K}}$$
 pert > t_p

essendo Q_m la portata massima ricavata dalla (3) imponendo $t = t_p$

- 3) Si calcola il volume W della parte di idrogramma che eccede il valore di portata vincolata Q_{vinc} che si ipotizza di scaricare nei primi strati del terreno finchè il sistema non è completamente vuoto.
- 4) Si incrementa la durata di precipitazione t_p e si ritorna al punto 2) fin tanto che il volume W non diminuisce.

Per aree aventi le caratteristiche idrogeologiche di cui sopra, gli eventi meteorici critici, in termini di smaltimento delle portate, sono quelli caratterizzati da una medie intensità (mm/h) e una media durata dell'evento di pioggia (nell'ordine delle 1÷4 ore).

Dalla procedura di calcolo sopra descritta si è ricavato quanto segue:

monte aventi le seguenti grandezze geometriche:

- 1. Il sistema SF1 necessita di una capacità d'invaso pari W_{calc}=16.156 mc d'invaso, al verificarsi di una durata critica di pioggia nell'ordine di Tc=243 min (cfr. tabella di calcolo n°3, in allegato).
 Al fine di soddisfare tale requisito si prevede di realizzare una depressione naturale L1 avente un'estensione superficiale di circa 5.100 mq e un'altezza utile di circa Hut=2,50 m per una capacità netta di invaso pari a circa W_{1a}=12.750 mc; la restante volumetria è garantita dagli scatolari di
- B=1,50 m
- H=1,00 m
- L=2.860 m

per un volume utile pari a $W_{1b}=3.646$ mc (considerando un grado di riempimento medio della sezione di deflusso pari a circa h/H=15%).

Pertanto il volume complessivo ai fini della laminazione per il sistema di smaltimento SF1 risulta pari a:

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l. Corso Italia n.13 20122 Milano (MI)	Comune di Alessandria Piattaforma logistica Progetto di invarianza idraulica e idrologica	Ottobre 2022	16 di 42

$$W_{1TOT} = W_{1a} + W_{1b} = (12.750 + 3.646) \text{ mc} = 16.396 \text{ mc} > 16.156 \text{ mc} = W_{calc}$$

Per maggior chiarezza si rimanda alla tabella di calcolo allegata nº3.

2. Il sistema SF2 necessita di una capacità d'invaso pari W_{calc}=12.886 mc d'invaso, al verificarsi di una durata critica di pioggia nell'ordine di Tc=1.261 min (cfr. tabella di calcolo n°4, in allegato).
Al fine di soddisfare tale requisito si prevede di realizzare una depressione naturale L2 avente un'estensione superficiale di circa 6.380 mq e un'altezza utile di circa Hut=2,05 m per una capacità netta di invaso pari a circa W₂=13.079 mc.

Per maggior chiarezza si rimanda alla tabella di calcolo allegata n°4.

3.4.5 Verifiche idrauliche invarianza idraulica ed idrologica

Innanzitutto preme sottolineare come i dimensionamenti sopradescritti dei sistemi d'invaso/disperdenti in progetto siano comparabili e allineati con quelli derivanti dall'applicazione di altre normative vigenti (ad es. R.R.o7/17 e smi - Regione Lombardia) dal momento che per ciascun sistema si ricava un valore d'invaso specifico pari rispettivamente a $W1_{spec}$ = 810 mc e $W2_{spec}$ = 1.450 mc per ettaro impermeabilizzato , tipico delle aree ad alta criticità idraulica (vedi tabella di calcolo n°5 in allegato).

Per quanto riguarda il dimensionamento d'invaso minimo, facendo riferimento alla situazione ANTE opera e POST opera, occorre garantire un volume minimo d'invaso pari a Wmin=22.046 mc.

Il volume utile d'invaso in progetto ammonta a Wprog=29.475 mc > 22.046 mc=Wmin.

VERIFICA soddisfatta.

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l. Corso Italia n.13	Comune di Alessandria Piattaforma logistica	Ottobre 2022	17 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		

Si procede ora alla verifica dei tempi di svuotamento del sistema di accumulo sopra calcolato. Il volume invasato deve essere smaltito entro le 60 ore successive.

Sulla base dell'estensione della superficie disperdente e della capacità di infiltrazione del terreno a saturazione si ottiene che il tempo di svuotamento di ciascuna sistema d'invaso/disperdente è sempre abbondantemente al di sotto del limite normativo di 60 ore:

- $T_{\text{syuot SF1}} = 44,65 \text{ ore}$
- T_{svuot SF2}=56,94 ore

VERIFICA soddisfatta.

Per maggior chiarezza si rimanda alla tabella di calcolo n°5 in allegato.

Committente	Documento	Data stampa	Pagina	
The Blossom Avenue Partners S.r.l.	Comune di Alessandria			
Corso Italia n.13	Piattaforma logistica	Ottobre 2022	18 di 42	
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica			

4. CONCLUSIONI

Lo smaltimento delle acque meteoriche che dilavano le superfici impermeabilizzate facenti parte dell'Ambito di Trasformazione in esame , avviene nei primi strati del sottosuolo mediante la realizzazione di n°2 depressioni naturali L1 e L2 .

La capacità d'invso dell'intero sistema ammonta a W_{tot}=29.475 mc, così suddiviso tra il magazzino nord ed il magazzino sud:

- W1=16.396 mc (depressione naturale L1+ invaso in linea scatolari)
- W2=13.079 mc (depressione naturale L2)

L'area in esame è esente dall'obbligo di stoccare e trattare le cosiddette acque di prima pioggia.

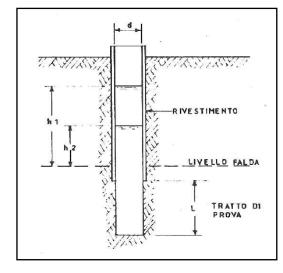
Pavia, 10/10/2022

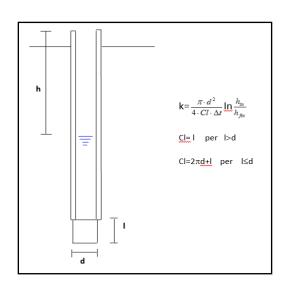
In fede

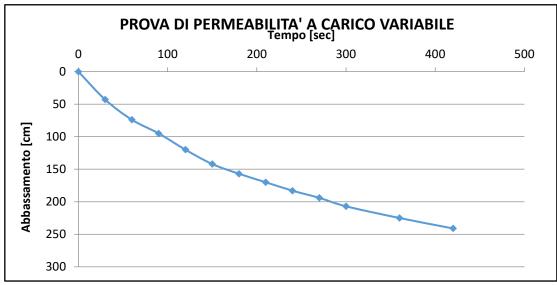
Ing. Michelangelo Aliverti

Committente	Documento	Data stampa	Pagina
The Blossom Avenue Partners S.r.l.	Comune di Alessandria		
Corso Italia n.13	Piattaforma logistica	Ottobre 2022	19 di 42
20122 Milano (MI)	Progetto di invarianza idraulica e idrologica		

ALLEGATI


PROVA DI PERMEABILITA' A CARICO VARIABILE


Sondaggio: SK4
Prof. prova [m da p.c.]: -2
Liv. Falda [m da p.c.]: 12


d =	12.7	[cm]
Area=	126.7	[cm ²]
L=	50	[cm]
C=	50.0	[cm]
t _{in} =	0	[sec]
t _{fin} =	600	[sec]
h ₁ =	300	[cm]
h ₂ =	16	[cm]

k=	1.24E-02	[cm/sec]
	1.24E-04	[m/sec]

tempo	tempo	abbassamento	livello
[min]	[sec]	[cm]	[cm]
0	0	0	300
0.5	30	43	257
1	60	74	226
1.5	90	95	205
2	120	120	180
2.5	150	142	158
3	180	157	143
3.5	210	170	130
4	240	183	117
4.5	270	194	106
5	300	207	93
6	360	225	75
7	420	241	59
8	480	255	45
9	540	270	30
10	600	284	16

TABELLA n°1_portata di piena

PORTATA DI PIENA			
	Curva possibi Alessandria		NOTA PROGETTUALE: ai fini del dimensionamento idraulico delle condotte si è optato di considerare il primo ramo della curva di possibilità climatica di cui alla Relazione tecnico-idraulica in allegato.
	а	32,8000	
	n	0,2900	
	n-1	-0,71	
	(n-1)*0,225	-0,15975	
	Y	0,30	
	Sr	0,30	
	r	0,6500	0,2900
per n=0,29	Z	0,7764	
	f	0,6490	

SF1	Area imp. [ha]	Area perm. [ha]	Area gravante [ha]	Σ Area gravante [ha]	φ imp	φ perm	φ	Area ridotta φ*S	K costante di invaso [s]	tempo critico di pioggia [s]	intensità media di pioggia [mm/h]	Q [mc/s]	Q [l/s]	U [l/(s ha)]
tratto (RP1) P1-P8	1,5123	0	1,5123	1,5123	1,00	0	1,00	1,5123	300,0	195,0	260,0	0,5220	521,95	345,15
tratto (RP2) P8-P21	1,5123	0	1,5123	3,0245	1,00	0	1,00	3,0245	300,0	195,0	260,0	1,0439	1043,91	345,15
tratto (RP3) P13-P20	1,5123	0	1,5123	1,5123	1,00	0	1,00	1,5123	300,0	195,0	260,0	0,5220	521,95	345,15
tratto (RP4) P20-P21	1,5123	0	1,5123	3,0245	1,00	0	1,00	3,0245	300,0	195,0	260,0	1,0439	1043,91	345,15
tratto 01-13	3,4606	0	3,4606	3,4606	1,00	0	1,00	3,4606	300,0	195,0	260,0	1,1944	1194,43	345,15
tratto 13-77	1,3120	0	1,3120	4,7726	1,00	0	1,00	4,7726	300,0	195,0	260,0	1,6473	1647,26	345,15
tratto 16-41	1,0139	0	1,0139	1,0139	1,00	0	1,00	1,0139	300,0	195,0	260,0	0,3500	349,96	345,15
tratto 24-41	2,0374	0	2,0374	2,0374	1,00	0	1,00	2,0374	300,0	195,0	260,0	0,7032	703,19	345,15
tratto 33-41	1,0139	0	1,0139	1,0139	1,00	0	1,00	1,0139	300,0	195,0	260,0	0,3500	349,96	345,15
tratto 41-77	0,0000	0	0,0000	4,0652	1,00	0	1,00	4,0652	300,0	195,0	260,0	1,4031	1403,10	345,15

tratto 44-67	0,8579	0	0,8579	0,8579	1,00	0	1,00	0,8579	300,0	195,0	260,0	0,2961	296,09	345,15
tratto 51-67	1,2972	0	1,2972	1,2972	1,00	0	1,00	1,2972	300,0	195,0	260,0	0,4477	447,73	345,15
tratto 59-67	2,1447	0	2,1447	2,1447	1,00	0	1,00	2,1447	300,0	195,0	260,0	0,7402	740,23	345,15
tratto 67-77	0,6920	0	0,6920	4,9917	1,00	0	1,00	4,9917	300,0	195,0	260,0	1,7229	1722,89	345,15
TOT SF1				19,8785			1,00	19,8785					6861,07	345,15
tratto al disoleatore D1					i primi 5	5 mm di pioggia s	u superfici car	rabili					1104,36	
SF2	Area imp. [ha]	Area perm. [ha]	Area gravante [ha]	Σ Area gravante [ha]	φ imp	φ perm	φ	Area ridotta φ*S	K costante di invaso [s]	tempo critico di pioggia [s]	intensità media di pioggia [mm/h]	Q [mc/s]	Q [l/s]	U [l/(s ha)]
tratto (RP5) P22-P26	1,7903	0	1,7903	1,7903	1,00	0	1,00	1,7903	300,0	195,0	260,0	0,6179	617,92	345,15
tratto (RP6) P26-P28	1,7903	0	1,7903	3,5806	1,00	0	1,00	3,5806	300,0	195,0	260,0	1,2358	1235,84	345,15
tratto (RP7) P29-P32	1,7903	0	1,7903	1,7903	1,00	0	1,00	1,7903	300,0	195,0	260,0	0,6179	617,92	345,15
tratto (RP8) P32-P37	1,7903	0	1,7903	3,5806	1,00	0	1,00	3,5806	300,0	195,0	260,0	1,2358	1235,84	345,15
tratto 78-86	1,0687	0	1,0687	1,0687	1,00	0	1,00	1,0687	300,0	195,0	260,0	0,3689	368,86	345,15
tratto 94-89	0,2082	0	0,2082	0,2082	1,00	0	1,00	0,2082	300,0	195,0	260,0	0,0719	71,86	345,15
tratto 87-89	0,1915	0	0,1915	0,1915	1,00	0	1,00	0,1915	300,0	195,0	260,0	0,0661	66,08	345,15
tratto 89-PR	0,3829	0	0,3829	0,7826	1,00	0	1,00	0,7826	300,0	195,0	260,0	0,2701	270,11	345,15
TOT SF2				9,0125			1,00	9,0125					3110,66	345,15
tratto al disoleatore D2 i primi 5 mm di pioggia su superfici carrabili										102,85				

TABELLA n°2_dimensionamento condotte

DIMENSIONAMENTO TUBI					
Diametro interno	Grado di riempimento h/d	A/r2	R/r	V/Vr	Q/Qr
D ≤ 400 mm	0,500	1,571	0,500	1,000	0,500
400 mm< D ≤ 600 mm	0,600	1,968	0,555	1,072	0,672
D> 600 mm	0,700	2,349	0,593	1,119	0,837
k			80		

									Sezioni co	ommerciali	
	Q [l/s]	i [m/m]	k	A/r2	R/r	Grado di riempimento ammissibile	r [m]	diametro di calcolo [mm]	diametro interno [mm]	diametro esterno [mm]	Percentuale di riempimento
tratto (RP1) P1-P8	521,953	0,001	80	2,349	0,593	0,700	0,457729	915		COPREM 1,00 m	8
tratto (RP2) P8-P21	1043,906	0,001	80	2,349	0,593	0,700	0,593601	1.187		COPREM 1,00 m	65
tratto (RP3) P13-P20	521,953	0,001	80	2,349	0,593	0,700	0,457729	915		COPREM 1,00 m	8
tratto (RP4) P20-P21	1043,906	0,001	80	2,349	0,593	0,700	0,593601	1.187		COPREM 1,00 m	65
tratto 01-13	1194,426	0,001	80	2,349	0,593	0,700	0,624354	1.249		COPREM 1,00 m	66
tratto 13-77	1647,263	0,001	80	2,349	0,593	0,700	0,704340	1.409		COPREM 1,00 m	70
tratto 16-41	349,956	0,001	80	2,349	0,593	0,700	0,394005	788		COPREM 1,00 m	5
tratto 24-41	703,191	0,001	80	2,349	0,593	0,700	0,511857	1.024		COPREM 1,00 m	6

tratto 33-41	349,956	0,001	80	2,349	0,593	0,700	0,394005	788		COPREM 1,00 m	5
tratto 41-77	1403,104	0,001	80	2,349	0,593	0,700	0,663216	1.326		COPREM 1,00 m	68
tratto 44-67	296,090	0,001	80	2,349	0,593	0,700	0,370067	740		COPREM 1,00 m	4
tratto 51-67	447,729	0,002	80	2,349	0,593	0,700	0,379476	759	800	900	66
tratto 59-67	740,226	0,001	80	2,349	0,593	0,700	0,484212	968	800	900	85
tratto 67-77	1722,889	0,001	80	2,349	0,593	0,700	0,672502	1.345	1.200	1.400	78
tratto (RP5) P22-P26	617,922	0,001	80	2,349	0,593	0,700	0,487637	975	1.200	1.400	57
tratto (RP6) P26-P28	1235,844	0,001	80	2,349	0,593	0,700	0,632387	1.265	1.200	1.400	74
tratto (RP7) P29-P32	617,922	0,001	80	2,349	0,593	0,700	0,487637	975	1.200	1.400	57
tratto (RP8) P32-P37	1235,844	0,001	80	2,349	0,593	0,700	0,632387	1.265	1.200	1.400	74
tratto 78-86	368,862	0,002	80	2,349	0,593	0,700	0,352880	706	800	900	62
tratto 94-89	71,860	0,002	80	2,349	0,593	0,700	0,191089	382	400	500	67
tratto 87-89	66,085	0,002	80	2,349	0,593	0,700	0,185179	370	400	500	65
tratto 89-PR	270,114	0,002	80	2,349	0,593	0,700	0,313967	628	600	700	73

TABELLA n°3_smaltimento in loco (L1 - SF1)

DIMENSIONE INVASO							
INVASO LAGHETTO "L1"							
Hmax (m)	2,5						
Af (m ²)	5100,000						
W1a (mc)	12750,000						

GRANDEZZE CARATTERISTICHE							
Aimp (ha)	19,8785						
Aimp (mq)	198785,00						

INVASO SCATOLARI IN LINEA						
L (m)	2860					
B (m)	1,500					
H (m)	1,000					
Grado Medio di riempimento (%)	15,000					
Hut (%)	0,850					
W1b (mc)	3646,500					

Wtot SF1 =W1+W2 (mc) 16396,500

area verde disperdente	permeabilità Ψ (m/s)	A infiltrazione (m ²)	Q _f (m ³ /s)	Δt (min)	intensità (mm/h)	Q _p (I/s)	Q _p (mc/s)	ΔW <wutile (m<sup="">3)</wutile>
	0,00010	5100,0	0,51000	243	31,51	1740,19	1,740188	16156,38

ldrogrammi di piena	Tp (min)	i (mm/h)	Tcritica (min)	ΔW (mc)
	15	238,52	20	5171,03
	30	143,80	35	8074,12
	60	86,70	64	11526,06
	120	52,27	124	14664,50

150	44,41	154	15323,89
180	38,88	184	15776,96
210	34,74	214	15878,22
240	31,51	243	16156,38
300	26,78	303	16097,00
360	23,44	363	15691,90
420	20,95	422	15173,85
480	19,00	482	14509,04
540	17,44	542	13765,22
600	16,14	602	12889,36
660	15,06	662	11940,44
720	14,13	722	10930,33
780	13,33	782	9868,14
840	12,63	841	8761,04
900	12,01	901	7614,71
960	11,46	961	6433,81
1020	10,96	1021	5222,19
1080	10,51	1081	3983,03
1140	10,10	1141	2719,05
1200	9,73	1201	1432,57

TABELLA n°4_smaltimento in loco (L2 - SF2)

DIMENSIONE INVASO							
INVASO LAGHETTO "L2"							
Hmax (m)	2,05						
Af (m ²)	6380,000						
Wtot (mc)	13079,000						

GRANDEZZE CARATTERISTICHE								
Aimp (ha)	9,0125							
Aimp (mq)	90125,00							

area verde disperdente	permeabilità Ψ (m/s)	A infiltrazione (m²)	Q _f (m ³ /s)	Δt (min)	intensità (mm/h)	Q _p (I/s)	Q _p (mc/s)	ΔW <wutile (m³)<="" th=""></wutile>
	0,00001	6380,0	0,06380	1261	9,38	234,71	0,234714	12886,71

Idrogrammi di piena	Tp (min)	i (mm/h)	Tcritica (min)	ΔW (mc)
	15	238,08	20	4760,63
	30	143,54	35	6012,96
	60	86,54	64	7356,75
	120	52,18	124	8810,75
	150	44,33	154	9294,52
	180	38,81	184	9697,20
	210	34,68	214	9982,37
	240	31,46	243	10333,00
	300	26,73	303	10819,11
	360	23,40	363	11182,77
	420	20,91	422	11500,09
	480	18,97	482	11761,89
	540	17,40	542	11994,70
	600	16,11	602	12175,50

660	15,03	662	12327,05
720	14,11	722	12453,87
780	13,31	782	12559,44
840	12,61	841	12646,55
900	11,99	901	12717,43
960	11,43	961	12773,92
1020	10,94	1021	12817,56
1080	10,49	1081	12849,64
1140	10,09	1141	12871,25
1200	9,72	1201	12883,34
1260	9,38	1261	12886,71
1320	9,06	1321	12882,08
1380	8,77	1381	12870,06
1440	8,50	1441	12840,60
	· · · · · · · · · · · · · · · · · · ·		<u> </u>

TABELLA n°5_verifiche invarianza idraulica ed idrologica

Grandezze caratteristiche	
Superficie intervento (ha)	39,7643
Superficie scolante impermeabile (ha)	28,8910
Coefficiente di deflusso medio	0,727
Tempo di svuotamento massimo ammissibile (ore)	60,00

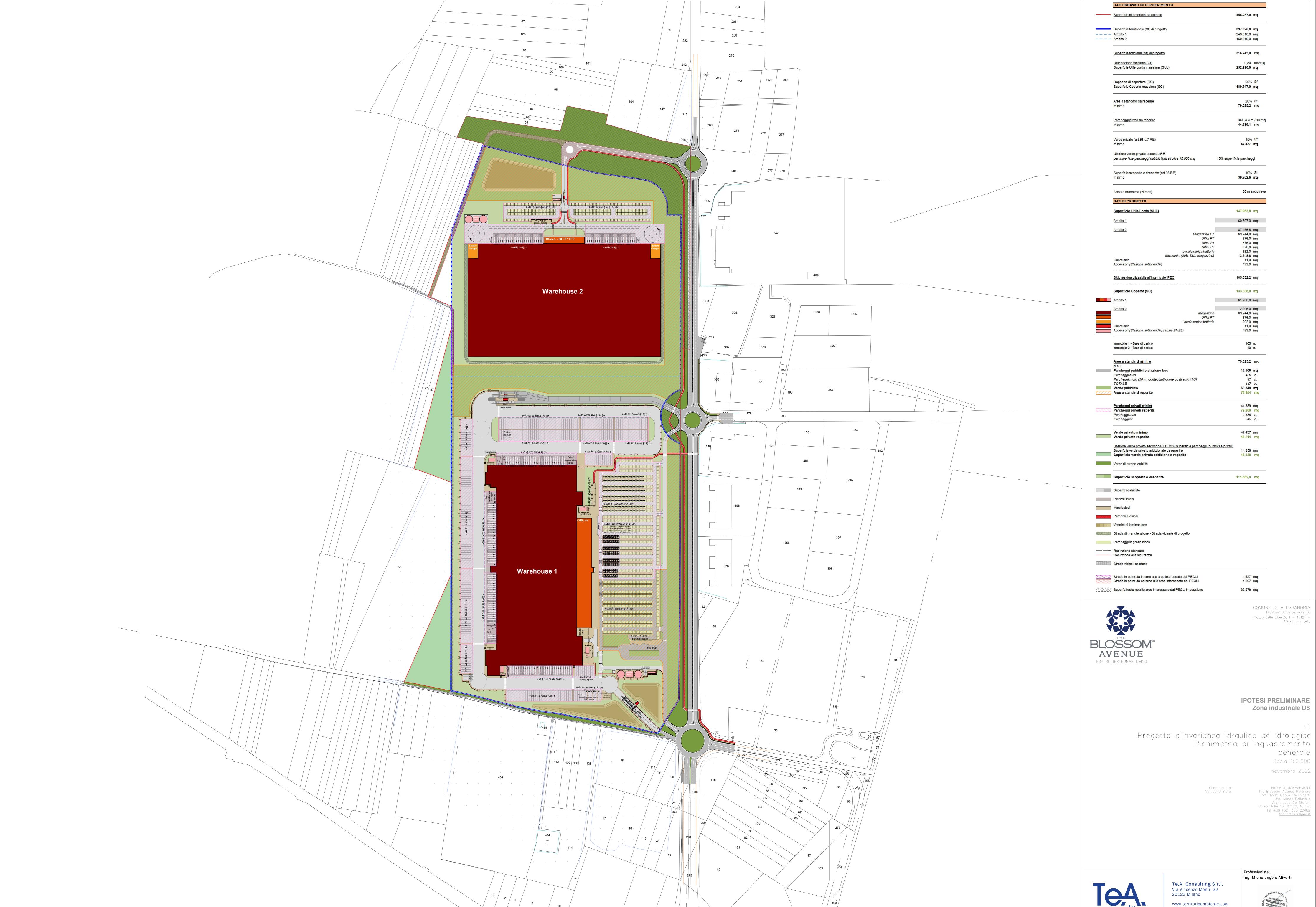
LEGGE DI HORTON									
tempo t (ore)	capacità infiltrazione SUOLO tipo B (mm/h)	-Δ (%) (equazione Horton)							
0	200,00	100,0							
1	38,05	19,0							
2	16,13	8,1							
3	13,16	6,6							
4	12,76	6,4							
5-24	12,70	6,4							

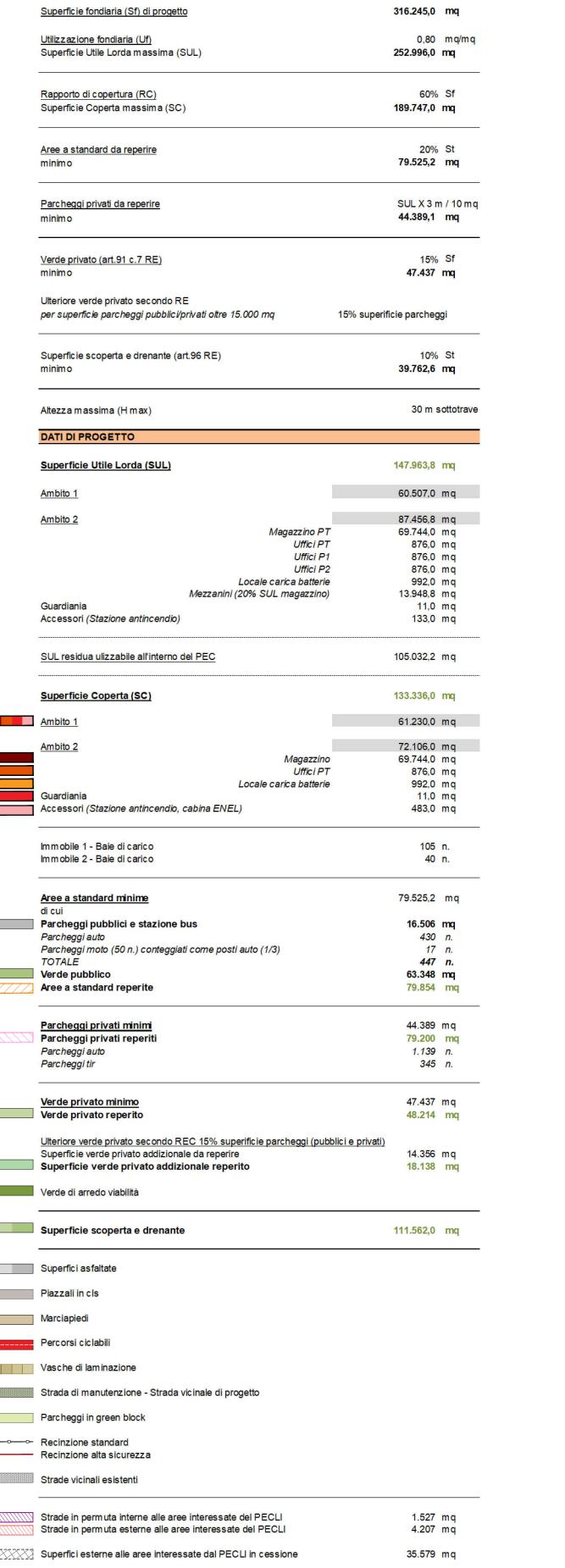
VERIFICA tempo svuotamento L1	Tmax ammissibile (ore)	Volume di calcolo L1 (T=100 anni) (mc)	Qf L1 (mc/s) al tempo critico T=243 min	Tempo svuotamento (sec)	Tsvuotamento (ore)	
	60,00	16396,50	0,1020	160750,0000	44,65	ок

VERIFICA tempo svuotamento L2	Tmax ammissibile (ore)	Volume di calcolo L2 (T=100 anni) (mc)	Qf L2(mc/s) al tempo critico T=64 min	Tempo svuotamento (sec)	Tsvuotamento (ore)	
	60,00	13079,00	0,0638	205000,0000	56,94	ок

VERIFICA invaso minimo	S.T. (ha)	ø ante	ø post	Wmin (mc)	Volume prog (mc)	Voluime spec. (mc/haimp)	
	39,76	0,20	0,72	22046,53	29475,50	1020,23	ок

CALCOLO DEI VOLUMI MINIMI PER L'INVARIANZA IDRAULICA


(inserire i dati esclusivamente nei campi cerchiati)


397.643,00 mq Superficie fondiaria inserire la superficie totale scolante all'interno del nuovo scarico acque meteoriche di progetto **ANTE OPERAM** 0,00 mq inserire il 100 % della superficie impermeabile Superficie impermeabile esistente e il 50% della superficie di stabilizzato/betonella etc. Imp° 0,00 Superifice permeabile esistente 397.643,00 mq inserire il 100 % della superficie permeabile (verde o agricola) e il 50% della superficie di stabilizzato/betonella etc. 1,00 Per° Imp°+Per° 1,00 corretto: risulta pari a 1

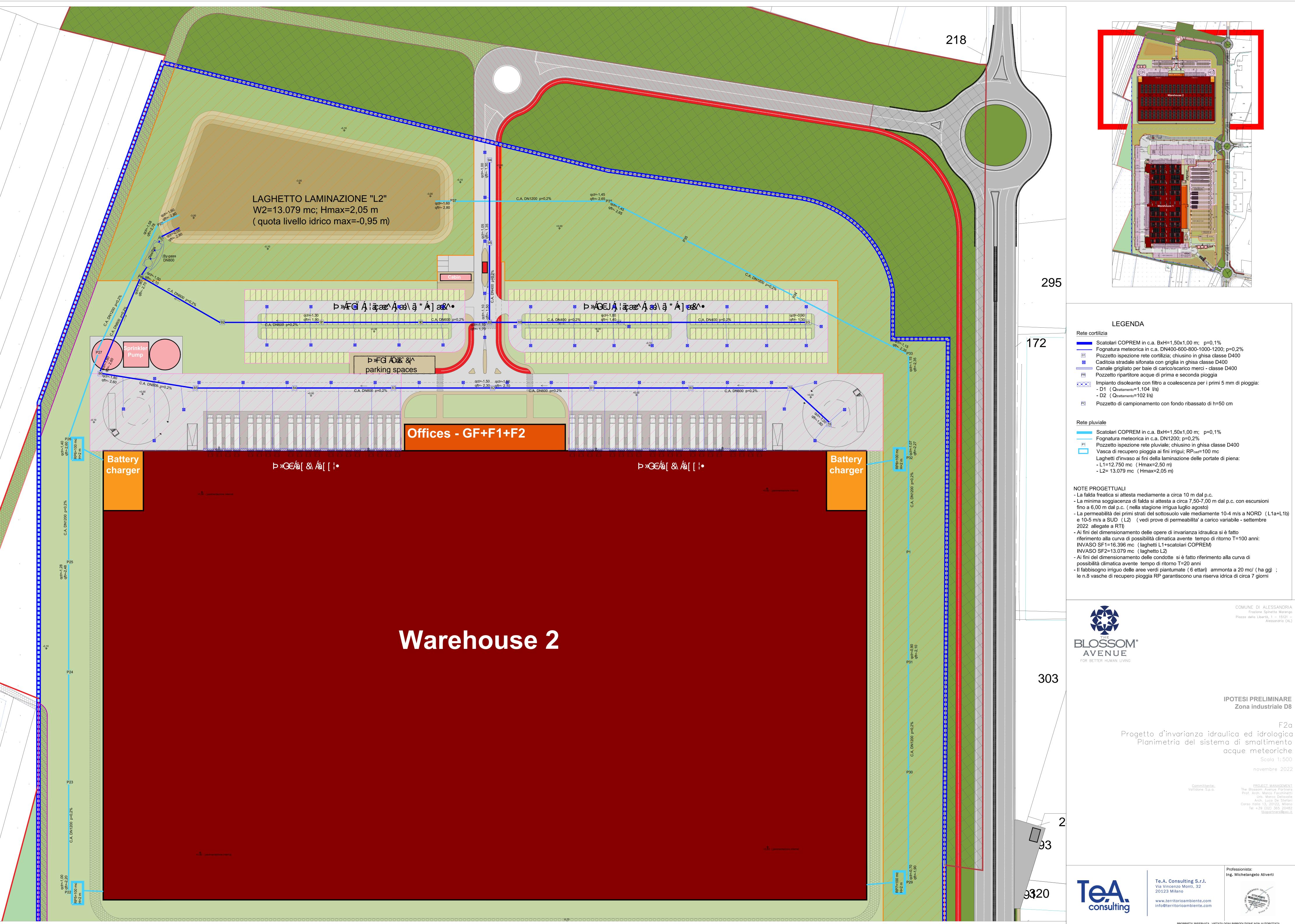
1451,609323

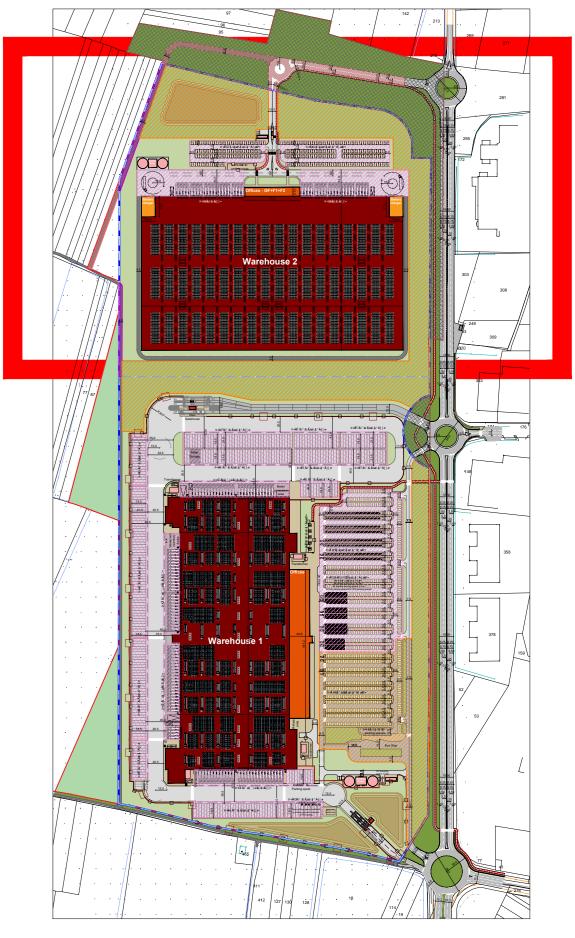
I OUI OI LIVAII	POST	OPERAM
-----------------	------	---------------

POST OPERAM	Superficie impermeabile di pro	getto	=	288.910,00 m	q				inserire il 100 % della superficie impermeabile e il 50% della superficie di stabilizzato/betonella etc.									
	Imp		=	0,73					e ii 30 % della superiicie di stabilizzato/betoriella etc.									
	Superficie permeabile pro	ogetto	=	108.733,00 m	q				inserire il 100 % della superficie permeabile (verde o agricola)									
	Per		=	0,27					e il 50% della superficie di stabilizzato/betonella etc.									
	Imp	o+Per	=	1,00					corretto: risulta pari a 1									
INDICI DI TRASFOR	MAZIONE DELL'AREA																	
	Superficie trasformata/liv	ellata	=	397.643,00 m	q				inserire la superficie di tut									
		1	=	1,00				di progetto. Comprese aree verdi										
	Superficie agricola inal	terata	=	0,00 m	q			inserire la superficie agricola di progetto										
		Р	=	0,00					(ovvero la superficie agricola inalterata)									
		I+P	=	1,00					corretto: risulta pari a 1									
CALCOLO DEI COEFFICIENTI DI DEFLUSSO ANTE OPERAM E POST OPERAM																		
$\phi^{\circ} = 0.9 \text{ x Im}$	p° + 0,2 x Per° =	0,9	X	0,00	+	0	,2 x	(1,00	=	0,20		φ°					
$\phi = 0.9 \text{ x I}$	mp + 0,2 x Per =	0,9	Х	0,73	+		,2 x	(0,27	=	0,71		ф					
CALCOLO DEL VOL	UME MINIMO DI INVASO																	
	-n)) - 15 I – w°P =	50	х	11,39	-	1	15 x	(1,00	-	50	х	0,00	=	554,43	mc/ha	w	
W = w x Superficie	e fondiaria (ha) =								554,43	Х	397.643	:	10.000	=	22.046,53	mc	w	

Alessandria (AL)

IPOTESI PRELIMINARE Zona industriale D8


PROJECT MANAGEMENT
The Blossom Avenue Partners
Prof. Arch. Marco Facchinetti
Urb. Marco Dellavalle
Arch. Luca De Stefani
Corso Italia 13, 20122, Milano



PROPRIETA' RISERVATA - VIETATA OGNI RIPRODUZIONE NON AUTORIZZATA

- Scatolari COPREM in c.a. BxH=1,50x1,00 m; p=0,1%
- Pozzetto ispezione rete cortilizia; chiusino in ghisa classe D400
- Pozzetto ripartitore acque di prima e seconda pioggia
- Impianto disoleante con filtro a coalescenza per i primi 5 mm di pioggia:
- D2 (Qtrattamento=102 I/s)
- Scatolari COPREM in c.a. BxH=1,50x1,00 m; p=0,1%
- —— Fognatura meteorica in c.a. DN1200; p=0,2%
- Pozzetto ispezione rete pluviale; chiusino in ghisa classe D400

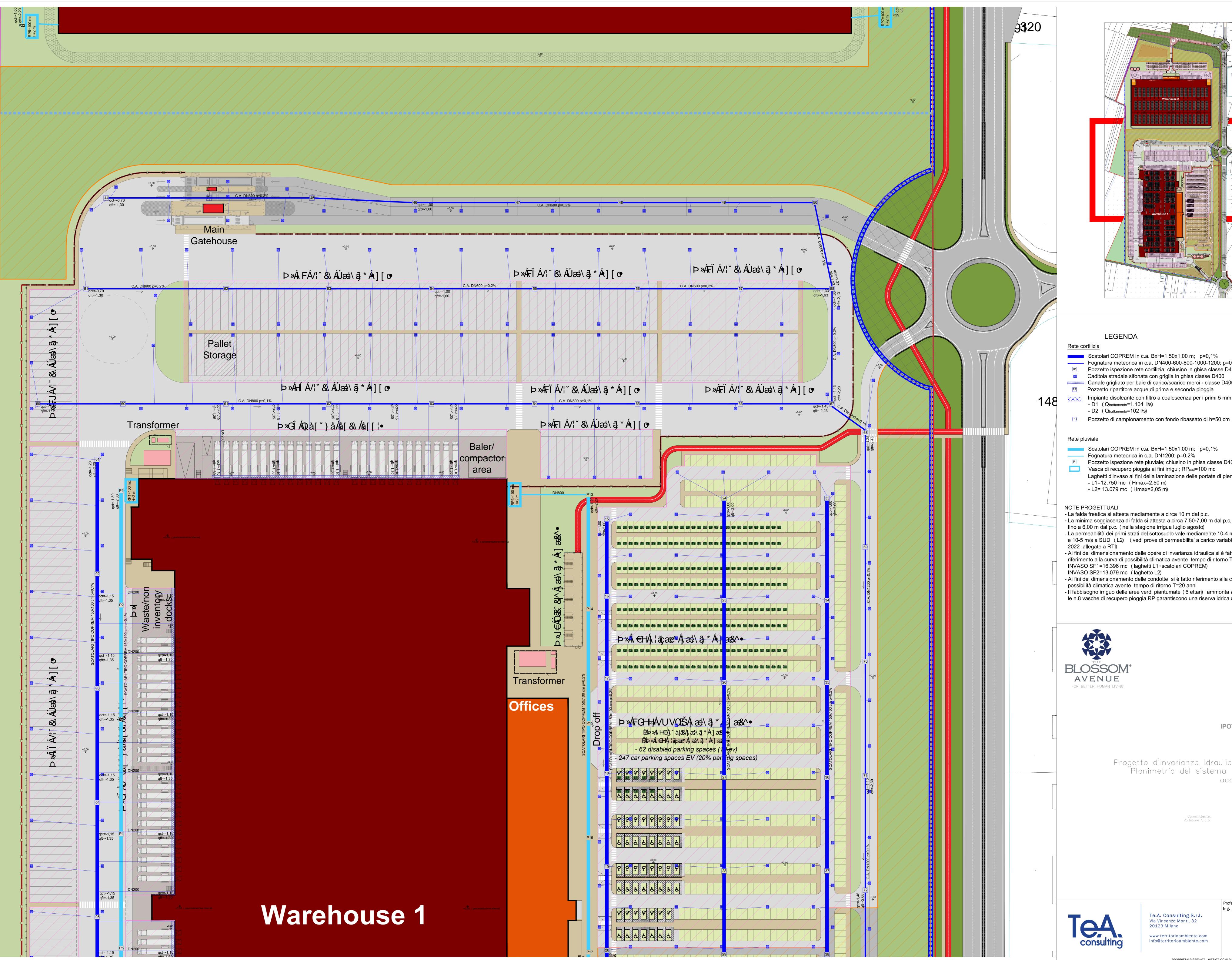
 Vasca di recupero pioggia ai fini irrigui; RPcad=100 mc Laghetti d'invaso ai fini della laminazione delle portate di piena:
 - L1=12.750 mc (Hmax=2,50 m)
 - L2= 13.079 mc (Hmax=2,05 m)
- La falda freatica si attesta mediamente a circa 10 m dal p.c.
- Ai fini del dimensionamento delle opere di invarianza idraulica si è fatto
- riferimento alla curva di possibilità climatica avente tempo di ritorno T=100 anni: INVASO SF1=16.396 mc (laghetti L1+scatolari COPREM)
- INVASO SF2=13.079 mc (laghetto L2)
 Ai fini del dimensionamento delle condotte si è fatto riferimento alla curva di
- possibilità climatica avente tempo di ritorno T=20 anni
- Il fabbisogno irriguo delle aree verdi piantumate (6 ettari) ammonta a 20 mc/ (ha gg) ; le n.8 vasche di recupero pioggia RP garantiscono una riserva idrica di circa 7 giorni

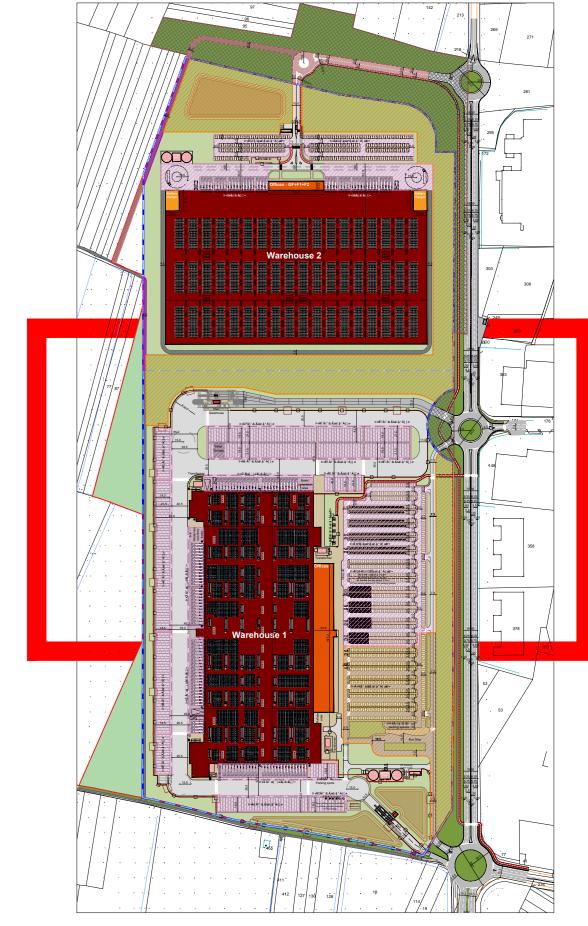
Piazza della Libertà, 1 — 15121 —

IPOTESI PRELIMINARE Zona industriale D8

Progetto d'invarianza idraulica ed idrologica Planimetria del sistema di smaltimento acque meteoriche

PROJECT MANAGEMENT
The Blossom Avenue Partners
Prof. Arch. Marco Facchinetti Urb. Marco Dellavalle Arch. Luca De Stefani Tel +39 (02) 365 20482 tbapartners@pec.it


Ing. Michelangelo Aliverti



PROPRIETA' RISERVATA - VIETATA OGNI RIPRODUZIONE NON AUTORIZZATA

LEGENDA

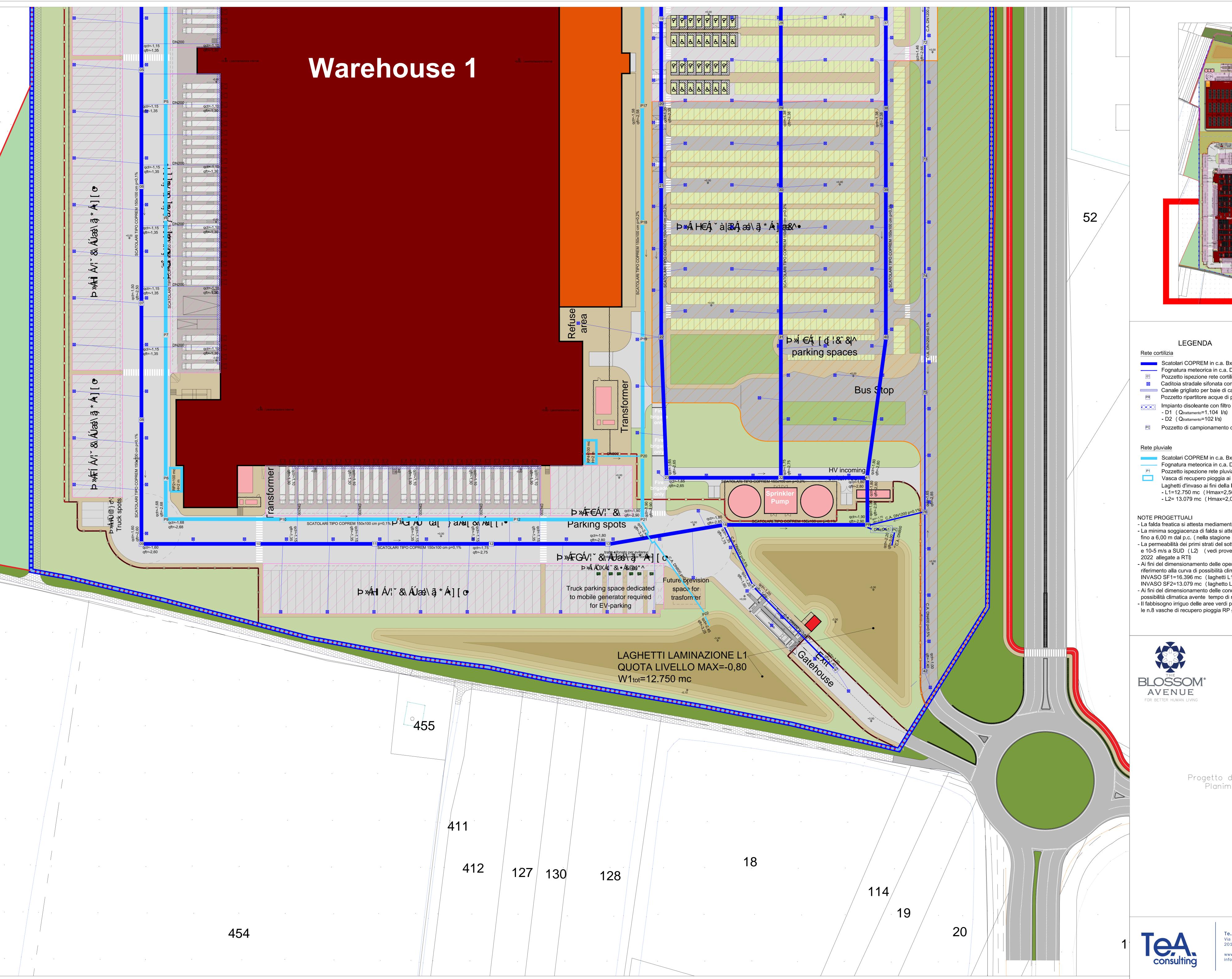
- Scatolari COPREM in c.a. BxH=1,50x1,00 m; p=0,1%
- Pozzetto ispezione rete cortilizia; chiusino in ghisa classe D400 Caditoia stradale sifonata con griglia in ghisa classe D400
 Canale grigliato per baie di carico/scarico merci - classe D400
- PR Pozzetto ripartitore acque di prima e seconda pioggia
- Impianto disoleante con filtro a coalescenza per i primi 5 mm di pioggia: - D1 (Qtrattamento=1.104 I/s)
- D2 (Qtrattamento=102 I/s)
- Scatolari COPREM in c.a. BxH=1,50x1,00 m; p=0,1% Fognatura meteorica in c.a. DN1200; p=0,2%
 - Pozzetto ispezione rete pluviale; chiusino in ghisa classe D400
- Vasca di recupero pioggia ai fini irrigui; RPcad=100 mc Laghetti d'invaso ai fini della laminazione delle portate di piena:
 - L1=12.750 mc (Hmax=2,50 m) - L2= 13.079 mc (Hmax=2,05 m)
- La falda freatica si attesta mediamente a circa 10 m dal p.c. - La minima soggiacenza di falda si attesta a circa 7,50-7,00 m dal p.c. con escursioni
- fino a 6,00 m dal p.c. (nella stagione irrigua luglio agosto)

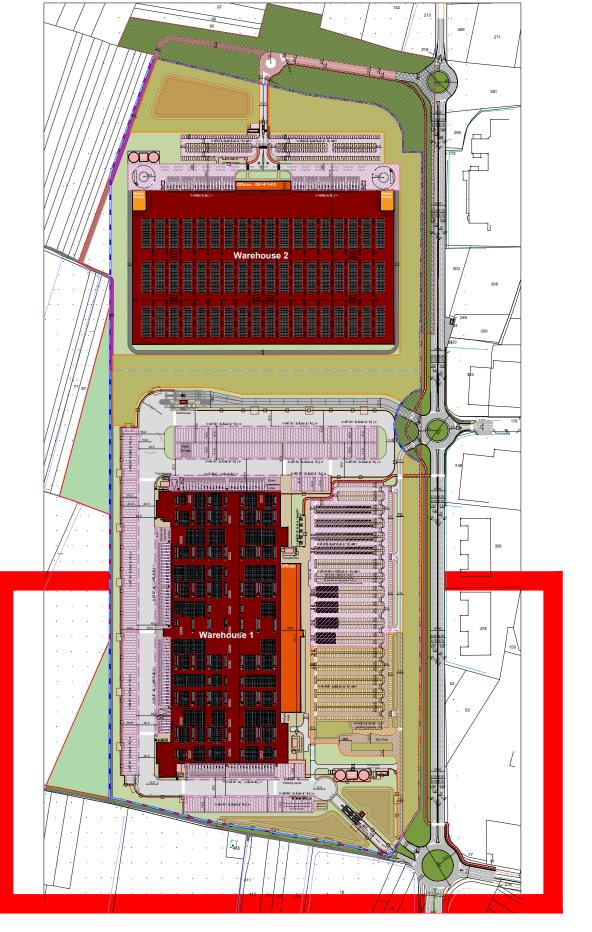
 La permeabilità dei primi strati del sottosuolo vale mediamente 10-4 m/s a NORD (L1a+L1b)
- e 10-5 m/s a SUD (L2) (vedi prove di permeabilita' a carico variabile settembre
- Ai fini del dimensionamento delle opere di invarianza idraulica si è fatto
- riferimento alla curva di possibilità climatica avente tempo di ritorno T=100 anni: INVASO SF1=16.396 mc (laghetti L1+scatolari COPREM)
- Ai fini del dimensionamento delle condotte si è fatto riferimento alla curva di
- possibilità climatica avente tempo di ritorno T=20 anni - Il fabbisogno irriguo delle aree verdi piantumate (6 ettari) ammonta a 20 mc/ (ha gg) ;
- le n.8 vasche di recupero pioggia RP garantiscono una riserva idrica di circa 7 giorni

IPOTESI PRELIMINARE

Zona industriale D8

Progetto d'invarianza idraulica ed idrologica





PROPRIETA' RISERVATA - VIETATA OGNI RIPRODUZIONE NON AUTORIZZATA

Ing. Michelangelo Aliverti

Scatolari COPREM in c.a. BxH=1,50x1,00 m; p=0,1%

Pozzetto ispezione rete cortilizia; chiusino in ghisa classe D400 Caditoia stradale sifonata con griglia in ghisa classe D400
Canale grigliato per baie di carico/scarico merci - classe D400

Pozzetto ripartitore acque di prima e seconda pioggia Impianto disoleante con filtro a coalescenza per i primi 5 mm di pioggia:

Pozzetto di campionamento con fondo ribassato di h=50 cm

Scatolari COPREM in c.a. BxH=1,50x1,00 m; p=0,1%

Fognatura meteorica in c.a. DN1200; p=0,2% Pozzetto ispezione rete pluviale; chiusino in ghisa classe D400 Vasca di recupero pioggia ai fini irrigui; RPcad=100 mc

Laghetti d'invaso ai fini della laminazione delle portate di piena: - L1=12.750 mc (Hmax=2,50 m) - L2= 13.079 mc (Hmax=2,05 m)

- La falda freatica si attesta mediamente a circa 10 m dal p.c.

- La minima soggiacenza di falda si attesta a circa 7,50-7,00 m dal p.c. con escursioni fino a 6,00 m dal p.c. (nella stagione irrigua luglio agosto)
- La permeabilità dei primi strati del sottosuolo vale mediamente 10-4 m/s a NORD (L1a+L1b) e 10-5 m/s a SUD (L2) (vedi prove di permeabilita' a carico variabile - settembre

- Ai fini del dimensionamento delle opere di invarianza idraulica si è fatto

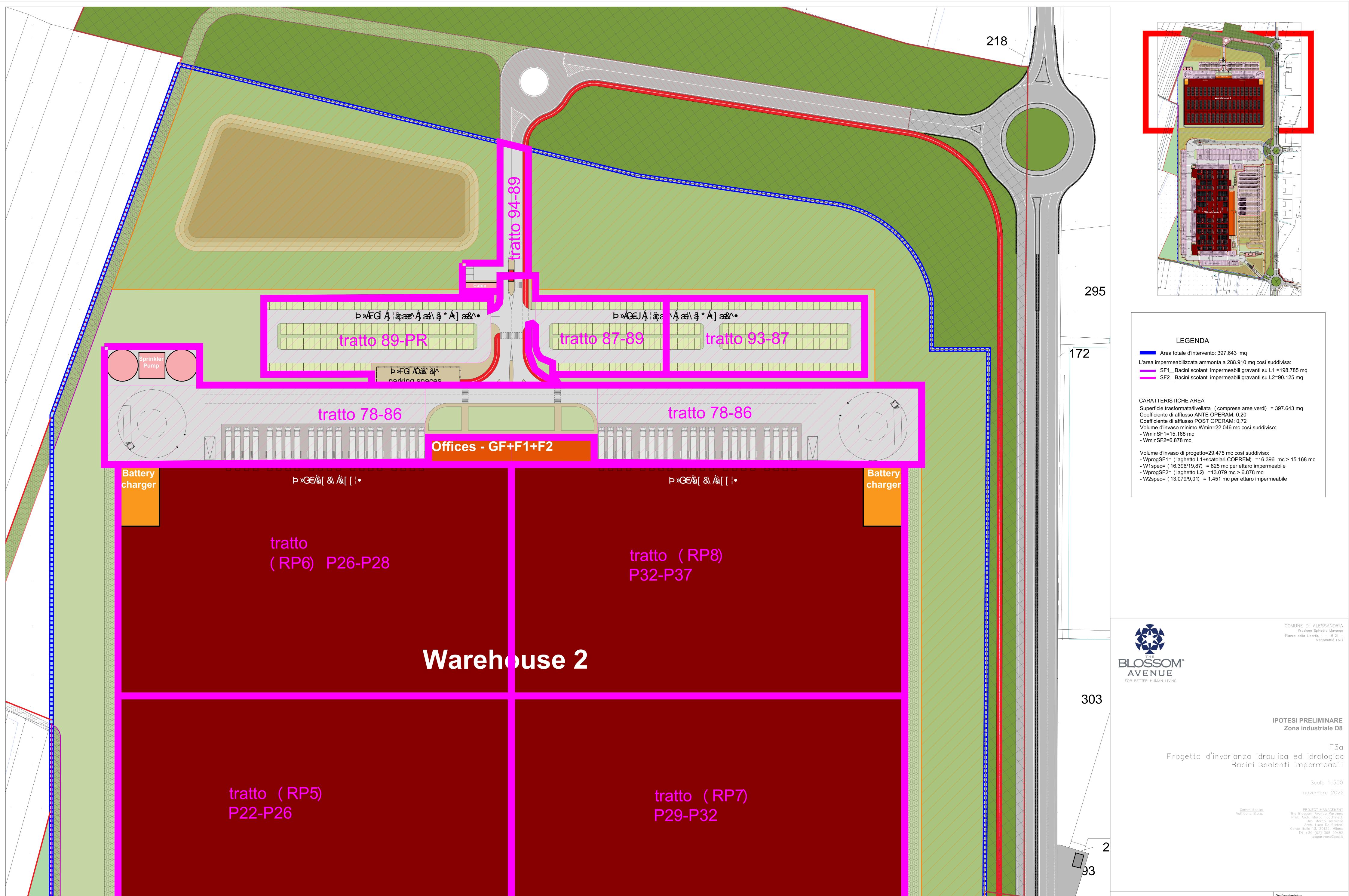
riferimento alla curva di possibilità climatica avente tempo di ritorno T=100 anni: INVASO SF1=16.396 mc (laghetti L1+scatolari COPREM) INVASO SF2=13.079 mc (laghetto L2)

- Ai fini del dimensionamento delle condotte si è fatto riferimento alla curva di possibilità climatica avente tempo di ritorno T=20 anni

- Il fabbisogno irriguo delle aree verdi piantumate (6 ettari) ammonta a 20 mc/ (ha gg) ; le n.8 vasche di recupero pioggia RP garantiscono una riserva idrica di circa 7 giorni

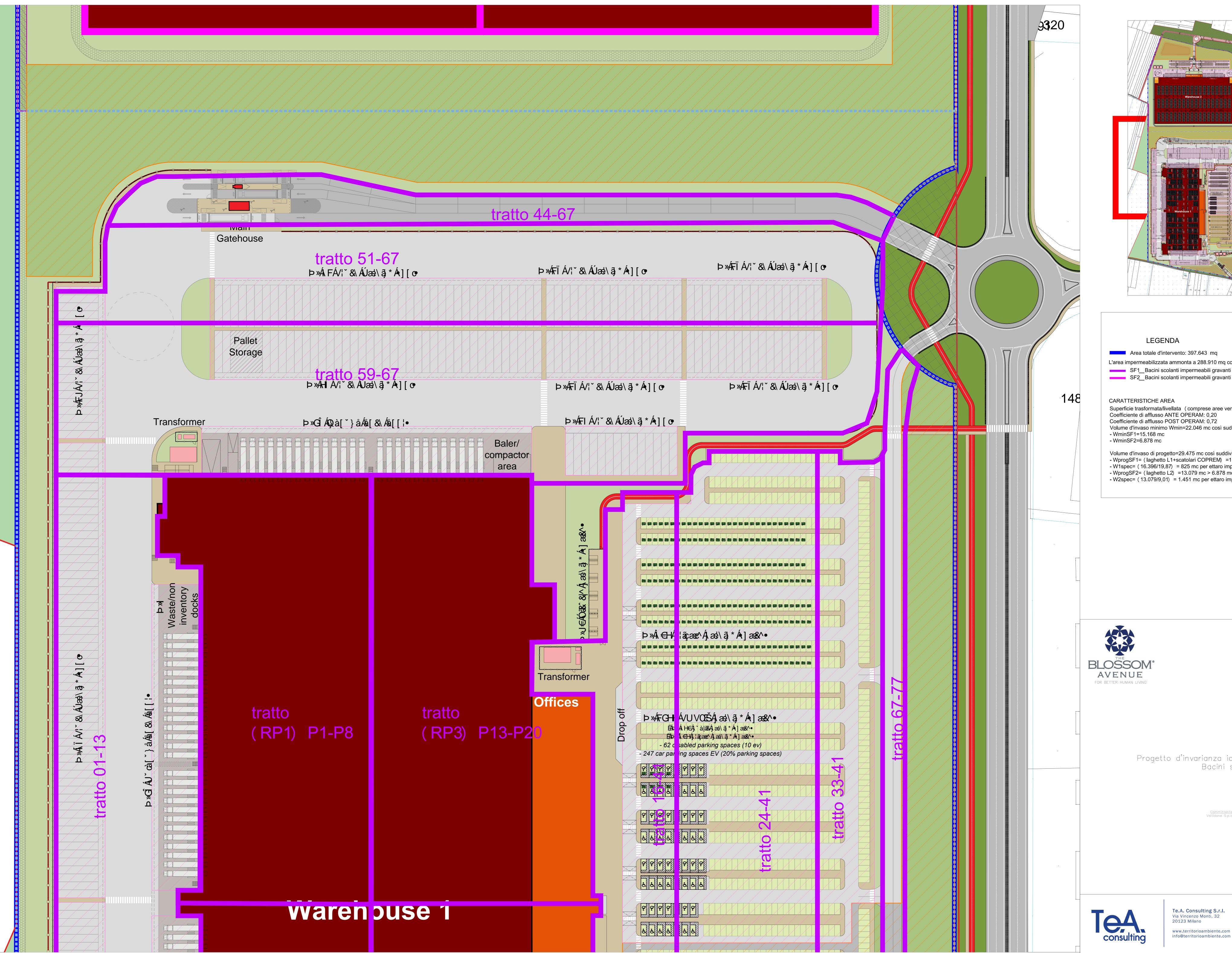
Piazza della Libertà, 1 — 15121 —

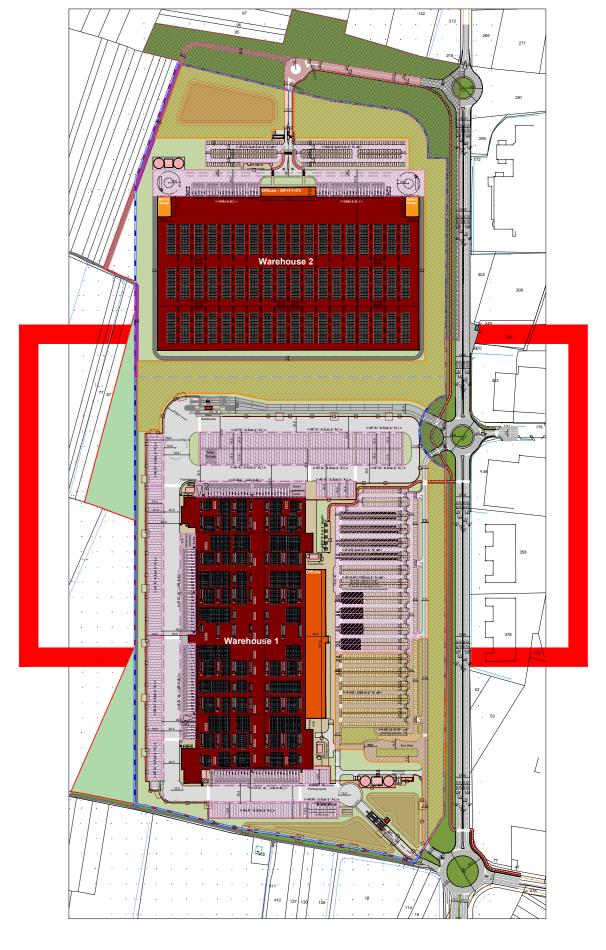
IPOTESI PRELIMINARE Zona industriale D8


Progetto d'invarianza idraulica ed idrologica

PROJECT MANAGEMENT
The Blossom Avenue Partners
Prof. Arch. Marco Facchinetti Urb. Marco Dellavalle Tel +39 (02) 365 20482

PROPRIETA' RISERVATA - VIETATA OGNI RIPRODUZIONE NON AUTORIZZATA




Te.A. Consulting S.r.I.
Via Vincenzo Monti, 32
20123 Milano

www.territorioambiente.com
info@territorioambiente.com

PROPRIETA' RISERVATA - VIETATA OGNI RIPRODUZIONE NON AUTORIZZATA

consulting

L'area impermeabilizzata ammonta a 288.910 mq così suddivisa: SF1_Bacini scolanti impermeabili gravanti su L1 =198.785 mq

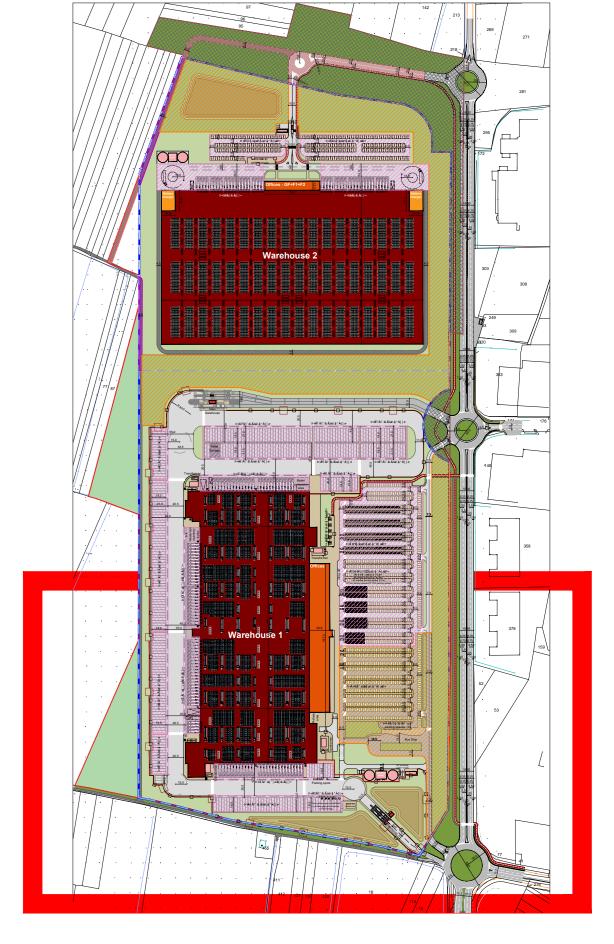
SF2_Bacini scolanti impermeabili gravanti su L2=90.125 mq

Superficie trasformata/livellata (comprese aree verdi) = 397.643 mq Coefficiente di afflusso ANTE OPERAM: 0,20 Coefficiente di afflusso POST OPERAM: 0,72 Volume d'invaso minimo Wmin=22.046 mc così suddiviso:

Volume d'invaso di progetto=29.475 mc così suddiviso: - WprogSF1= (laghetto L1+scatolari COPREM) =16.396 mc > 15.168 mc - W1spec= (16.396/19,87) = 825 mc per ettaro impermeabile - WprogSF2= (laghetto L2) =13.079 mc > 6.878 mc - W2spec= (13.079/9,01) = 1.451 mc per ettaro impermeabile

IPOTESI PRELIMINARE

Zona industriale D8


Progetto d'invarianza idraulica ed idrologica Bacini scolanti impermeabili

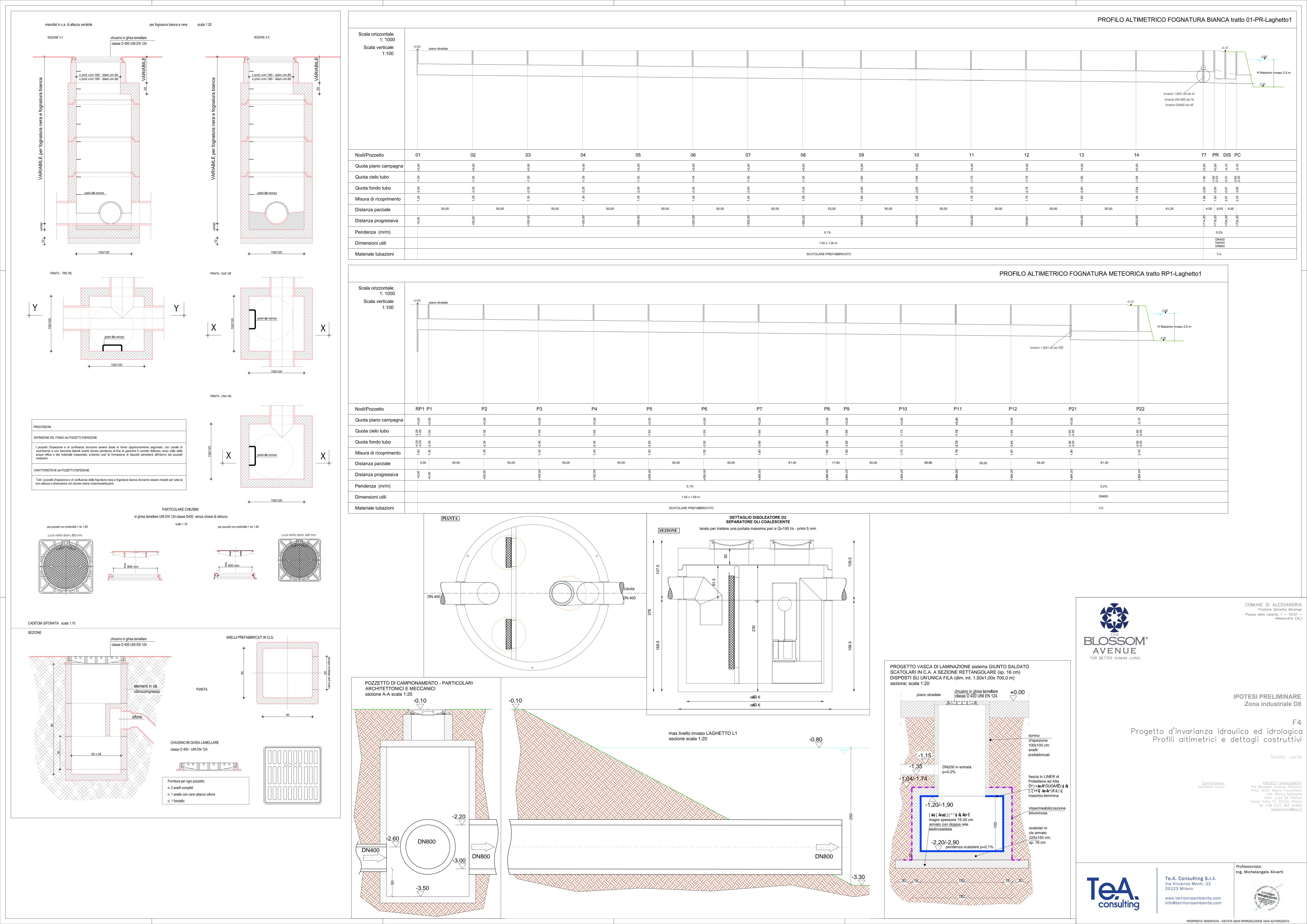
PROPRIETA' RISERVATA - VIETATA OGNI RIPRODUZIONE NON AUTORIZZATA

L'area impermeabilizzata ammonta a 288.910 mq così suddivisa:

Superficie trasformata/livellata (comprese aree verdi) = 397.643 mq Coefficiente di afflusso ANTE OPERAM: 0,20 Coefficiente di afflusso POST OPERAM: 0,72 Volume d'invaso minimo Wmin=22.046 mc così suddiviso:

Volume d'invaso di progetto=29.475 mc così suddiviso:
- WprogSF1= (laghetto L1+scatolari COPREM) =16.396 mc > 15.168 mc - W1spec= (16.396/19,87) = 825 mc per ettaro impermeabile - WprogSF2= (laghetto L2) =13.079 mc > 6.878 mc - W2spec= (13.079/9,01) = 1.451 mc per ettaro impermeabile

IPOTESI PRELIMINARE


Zona industriale D8

Progetto d'invarianza idraulica ed idrologica Bacini scolanti impermeabili

PROJECT MANAGEMENT
The Blossom Avenue Partners
Prof. Arch. Marco Facchinetti Urb. Marco Dellavalle Arch. Luca De Stefani Tel +39 (02) 365 20482

